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Monotone Semiflows Generated by Functional Differential Equations

by

Hal Smith

ABSTRACT

'-In- this paper we obtain:- sufficient condition for an autonomous functional

differential equation to generate a strongly monotone semiflow on a suitable state

space. This allows the application to functional differential equations of very

powerful recent results on strongly monotone semiflows due to M.W. Hirsch and H.-

Matano. In addition, a very striking relationship is established between such

functional differential equations and corresponding ordinary differential equations.

An example, involving a biochemical feedback loop is considered.
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Monotone Semiflows Generated by Functional Differential Equations

Hal Smith*
Lefschetz Center for Dynamical Systems

Brown University
Providence, Rhode Island 02912

Recently, there has been a considerable advance in our understanding of the

qualitative as well as the asymptotic behavior of semiflows on partially ordered

spaces which preserve the partial ordering. In large part, this advance is due to

recent work of M.W. Hirsch [9-12] and H. Matano [14-16]. The most striking result,

due to Hirsch (10,11,12], implies that "almost every" precompact orbit converges to

the set of equilibria (under suitable hypotheses, see section 4). These results have

been applied to ordinary differential equations in Rn (see e.g. [10,23]) where the

well-known Kamke theorem applies and to nonlinear reaction diffusion systems

with quasimonotone reaction term (see e.g. [11,12,14,15,23]) where maximum

principles apply. The aim of this paper is to develop the machinery necessary to

apply the above mentioned results to the class of functional differential equations,

FDE's, and to investigate the qualitative behavior of the subclass of these

equations which generate an order preserving semiflow.

More precisely, we consider the FDE

(0.1) x'(t) - f(xt) , dt
dt

where f: C([-r,0],Rn) - Rn and xt denotes the element of C = C([-r,0],Rn), the space

of continuous maps of I-r,0] into R n , given by xt(O) - x(t+O), -r ( e 4 0. For more

details concerning FDE's we refer the reader to the text [6]. Assume that (0.1),

together with the initial data x0 - 0 G C, gives rise to a unique solution on [0,o),

o , 0, which we denote by x(t,0) or xt(O) depending on whether we view the

solution in Rn or C. Then, under suitable conditions, the collection of maps,

0On leave from Arizona State University.
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O " xt(O), is a local semiflow on C. If 0,0 E C, we write 0 ( i (0 < 0) if the

indicated inequality holds pointwise, with the usual (componentwise) partial

ordering on Rn. The semiflow is order preserving (we will say that f is

cooperative) if whenever 0 (- 0 we have xt(0) 4 xt(O) for all t, 0 4 t < min(o0 ,o}.

Sufficient conditions for f to be cooperative appear not to be well-known. After,

obtaining such conditions, this author found references to work of K. Kunisch

and W. Schappacher [25], R.H. Martin [13] and Y. Ohta [18] who had earlier

obtained the same sufficient conditions. Most likely, others before them have

obtained the following sufficient condition

(H) Whenever 0 - 0 and ,i(0) = i( 0) it follows that fi(0) ( fi(O).

For those familiar with the Kamke (quasimonotone) condition for ordinary

differential equations, (H) will seem quite natural, it reduces to the Kamke

condition.

The order preserving property of a semiflow is not sufficient for the

strong result of Hirsch mentioned above; one requires strongly order preserving

semiflows, that is, if 0 ( @, 0 4i then xt(O) < xt(1), at least for all large t (it is

only reasonable to expect such an inequality for t ) r).

In section 2 of this paper we develop sufficient conditions for (0.1) to

generate a strongly order preserving semiflow (we say, in this case, that f is

cooperative and irreducible).

In section 3, we consider the stability of steady states of cooperative

FDE's and the existence of connecting orbits between steady states.

In section 4, we state the relevant results of Hirsch which apply in our

setting.

The main result of our work can be roughly summarized as follows. Let

f be cooperative and irreducible (see section 2) and assume all orbits of (0.1) are
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precompact (e.g. all orbits are bounded and f maps bounded sets to bounded sets).

Then, for a dense set of initial conditions for (0.1), the qualitative behavior of the

solutions of (0.1) is the same as for the ordinary differential equation

(0.2) x'(t) = F(x(t))

F(x) = f(x)

A

where x _ x is the inclusion of Rn into C given by x(0) = x. Equations (0.1) and

(0.2) have the same steady states and the stability properties of a steady state x of

(0.1) are the same as for the steady state x of (0.2). Moreover, Equation (0.2) is

cooperative in the sense of Hirsch [9] and hence there are simple tests for stability

and instability of steady states of (0.2) (see [23] and Corollary 3.2). These rather

striking results represent a considerable improvement in the connection made

between (0.1) and (0.2) by R.H. Martin [13].

The results of the first four sections of this paper are applied in section

5 of this paper to a model of biochemical feedback in protein synthesis which goes

back to Goodwin [4] and has been the object of much study [13,20,21,24]

particularly in the nondelay case. Under very reasonable hypotheses, we obtain an

essentially complete picture of the qualitative behavior of the solutions of

the model equations.

It is convenient to establish some notation here. Let Rn be the cone of

non-negative vectors in Rn. If x,y E Rn we write x ( y(x < y) if x i 4 yi(xi < yi)

for I ( i ( n. Let (e l ,...,en) denote the standard basis in Rn and let l=el+e 2 +...+en .

If x 4 y, we write [x,y] - (zeRn: x ( z ( y). Set N = (1,2,...,n). Let r ) 0 and

C - C([-r,O],Rn) be the Banach space of continuous functions mappings 0:[-r,O]-.Rn

" with supremum norm. If 0,0 C C, we write 0 ( O( < 0) in case the indicated

inequality holds at each point of [-r,O]. If 0 0 , we write [0,0] = {eC: 13 ) (.
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Let C+ = (CC: 0 ; 0). Let denote the inclusion Rn - C([-r,O],Rn) by x -. x,

x(G) a x, e0l-r,0]. Denote the space of functions of bounded variation on [-r,0] by

BV[-r,0]. If A and B are subsets of a linear space, then A+B = {a+b: aEA,beB) and

similarly for A-B. If X and Y are Banach spaces, let L(X,Y) denote the space of

bounded linear maps from X to Y. Let A and B be nxn matrices. We write AB

if the equality holds componentwise. The matrix A is irreducible if it does not

leave invariant any proper subspace of Rn spanned by a subset of the standard

basis elements. We write s(A) = max Re X where X runs over the eigenvalues of A,

the stability modulus of A. If a E Rn we write diag(a) for the nxn diagonal

matrix with ai in the (i,i) entry.

a,
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1. Comparison results.

Let fl be an open subset of R x C and f: fl - Rn be continuous. Consider

the FDE

(1.1) x'(t) -= f(t,xt).

We assume throughout this paper that solutions of the initial value problem (1 .1)

together with = , for (t0 ,O) E n, are unique. If f is Lipschitz continuous in 0

on compact subsets of (I then uniqueness holds [6]. We write x(t,to,O,f)(xt(toO,f))

for the solution of the initial value problem and we drop the f when no confusion

results.

The results of this section have probably been proved by many authors.

However we are only aware of the work of contained in [13],[18], and [25]. These

authors proved both results of this section.

Consider the hypothesis:

(H): If (t,O),(t,O) E fl, 0 4 0 and Oi( 0 ) = Oi(O) for some i, then

fi(t,O) 4 fi(t,O).

The main result of this section is the following.

Proposition 1.1: Let f,g : (l - Rn be as above and assume either f or g satisfies

(H). Assume f(t,O) 4 g(t,O) for all (t,O) e CL. If (t0 ,),(t 0,O) E n with 0 4 then

x(t,t 0 ,o,f) ( x(t,t 0 ,,g)

for all t ? to for which both are defined.

Proof: Assume that f satisfies (H). Let gE(t,O) = g(t,O) + El and 4 - +e for

c ) 0. If x(t,t 0 ,O,g) is defined on [t0 -r,tl] for some t1 > to then x(t,t0,O(,ge) is

defined on [t0 -r,tl] for all sufficiently small positive e by Theorem 2.2 of [6]. We

will show that x(t,t 0 ,o,f) < x(t,t0,OE,gc) on [t0 -r,tl] for small positive C. The

proposition will then follow by letting e -. 0 and applying Theorem 2.2 of [6].

Suppose the above assertion is false. Then there exists a small positive E for

)6
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which x(t,to,O,gE) is defined on [to-r,tl] and a t'E(to,tl] such that

x(t,to,O,f) < x(t,to,OE,g6) on [to-r,t') and xi(t',to,o,f) = xi(t',to,OE,ge) for some value

of i. Clearly x'(t',t0 ,O,f) ), x1(t',t0 ,oc,ge). But

x1(t',to,,g )  gi(txt,(to, d)) +6

fi(t',xt,(to,OE,g 6 )) + e

S> f i(t",xt,(tOo ,E )

fi(t',xt,(t0,O,f))

x!(t' to $ f)

where the latter inequality follows from (H). This contradiction implies that such

a t' cannot exist and establishes the above assertion (and the proposition).

Suppose that C1 = R x U where U is an open subset of C containing C+ .

The following invariance result will be useful. The proof involves ideas similar to

those used in the proof of Proposition 1.1 and is therefore omitted.

Proposition 1.2: Assume that whenever 0 e C+ with Oi(O) = 0 and t - R, fi(t,O)>0.

If 0 E C+ and t o E R then x(t,t 0 ,) ) 0 for all t > t o in the maximal interval of

existence.

Proposition 1.2 is a very special case of much more general invariance

result due to G. Seifert [19].

'1

g,°.

-I.
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2. Cooperative Irreducible FDE's

The ultimate goal of this section is to find sufficient conditions for the

autonomous FDE

(2.1) x'(t) = f(xt), f :C - Rn

to have the property that whenever 0,0 E C are distinct with * ,

then xt(0,0) ( xt(0,) for t ) 0

and xt(0) < xt(O) for t ) t o > 0,

to sufficiently large (independent of 0 and 0). The following example will show

us that we need to modify slightly our notion of the state space of (2.1).

Consider the initial value problem

x'1(t) = axl(t) + bx 2 (t-l/2)
t )0

x (t) = cxl(t-1) + dx 2 (t)

x 1 (8) 0
-1 ( B (0

x2(e)= 02(e)

supp 02 g [-1,-2/3], 02 ) 0, 02 i 0.

The initial value problem can easily be integrated by steps and one finds

x(t) - 0 for t k -2/3. The problem is that x2 (t-1/2), t ) 0, "never sees" the support

of 02 SO x'(t) = 0. Hence, although the initial condition 0 = (0,02) ) 0 satisfies

0 v 0, we nevertheless have x(t,0,0) agreeing with the identically zero solution.

The source of the failure of the solution operator to distinguish between

the two initial conditions 0 and 0 is our (implicit) choice of the state space as

C = C([-l,0],R 2 ). We will show that this pathology can be removed by taking our

state space to be C( 1 ,1/ 2 ) - C([-I,0],R) x C([-1/2,0],R). To this end, consider the

above linear equation where b > 0, c > 0. Let (01,02) e C(1,1/2) and assume



(01,02) € 0. We can associate to (01,02) = 0 a solution x(t,0,0) and it is not

difficult to see that x(t,0,0) > 0 for t > 3/2 (the worst case is where the support of

01 belongs to, say, [-c,-e/2] for small c and 02 = 0). In addition, for each small

e > 0, one can select a nontrivial 0 as above such that x1(t,0,O) S 0 on [0,3/2-E] but

x(t,0,0) > 0 for t ) 3/2.

It is worth emphasizing this last point. Namely that, with our new

choice of state space, if 0 ) 0 and 0 A 0, the solution x(t,0,0) has the property that

x(t,0,0) > 0 for t ) 3/2. In other words, it takes time for nontrivial nonnegative

initial conditions to become a positive state. Fortunately, we can bound from

above this time lapse independently of the initial conditions.

Motivated by this example, we develop some notation. Let r - Rn

r = (rl,r 2 .... rn), Jr I max ri and let

Cr = C([-rl,0],R) x C([-r 2 ,0],R) x ... x C([-rn,0],R)

C = Cq[-lrI,Oj,Rn).

Given an element 0 = (01...n) C Cr we will identify 0 with an element of C,

which again we label 0, by the correspondence

O(e) = (Ri(e),.....n(e)) where ii [-Ir1,O] R

is defined by Oi(8) = 1 0i(-ri) -Ir e - i

This inclusion, I, of Cr into C is injective but not surjective. Similarly, given an

element 0 of C we will identify 0 with an element of Cr, which we label 0 again,

by C( ... n)6Cr, 0i-(")i"e •
[-ri,O ]

This latter map, R, of C into Cr is surjective but of course, not injective. We

write C+ for the cone of n-tuples of nonnegative functions and if 0,0 C- C+ we
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write 4) (€ < 0) if 4-0 e C+ (,-0 C- interior C+). Note that we use the same

symbol for inequality in both C and Cr. This should not cause a problem since

0 (4 in Cr if and only if 4) in C (upon making identifications as above).

Finally, let Ker(R) = (CC : i() = 0, -r i ( 0 , 0, 1 4 i ( n).

It will be convenient to define the semigroup on C generated by the

trivial FDE : x'=0. For T ) 0, define S(T) :C -C by(-- (6 -I=n ' e .<-T
[S(T)0]( e) = 0 if T < Irl

1(0) -T ( e 0

and

[S(T)O] 0(0) if T ) In.

With this notation, we begin by considering a nonautonomous linear

equation. Our aim is to establish sufficient conditions for certain nonnegative

nonzero initial conditions to give rise to eventually positive solutions.

Consider the linear FDE

(2.2) x'(t) = L(t,xt)

where L(t,.) : C - Rn is a bounded linear map and t -" L(t,.) is continuous from A

to L(C,Rn), the space of bounded linear maps of C into R n . The following

hypotheses will be required

(K): For all 0 E C+ with Oi( 0 ) = 0, Li(t,O) ) 0 for t - A .

(I): The matrix A(L)(t) defined by
^ A

A(L)(t) = col(L(t,e 1 ),L(t,e 2 ), ... , L(t,en))

is irreducible for every t e R

(R): If * e C + , 0 f Ker(R) and 0(0) = 0, to e R then there exists i E N and

T E [0, 1r1) such that

Li(t0+T,S(Tr)O) > 0.
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In order to get another perspective on the hypotheses (K) and (I),

consider the standard representation of L as L = (L1 ... 1Ln) where

n 0
Li(t,O) =E f 1(e) denij(eit), 1 i ( n

j= IrI
in which 1ij : RxR -. R satisfies

nj( = nij(Ot) 0 0

?7ij(,t) = nij(-Ir It) = e -Irn
rij( -,t) C BV[- Ir I ,0 ]

nij(-,t) is continuous from the left on (-Ir,O).

If we set

ai(t) a n7ii(O,t) - nii(O-,t), 1 i n

( t f  i(e't)' 0 < 0
i nii(O-,t), 8 10

then

0 0
Li(tO) f ai(t)Oi(O) + j ri(e)delii(6 't) + E f rj(e)deo7ij(e't)

a ai(t) Oi( 0 ) + L (t,O)

It is easy to see that (K) holds if and only if -ii and i j, isj, are nondecreasing in

- for fixed t. Hence (K) holds if and only if L(t,.) C+ - Rn

It is not difficult to see that due to the continuity of the map t - L(t,-),

ai(t) is continuous in t.
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Finally, we note that the matrix A(L)(t) has entries

0
(2.3) A(L)(t)ij - f defrij(O,t) =-7ij(Ot)

-Ir I

The next several results concern solutions x(t,t0 ,O) of (2.2). We begin by

showing that (K) implies that if a solution x(t,t0 ,o) (0 C C+ ) ever has a positive

component then ever after that component is positive.

Lemma 2.1: Let (K) hold, 0 C C+ and x(t) = x(t,t 0 ,O) , t ) to, satisfy (2.2).

If xj(tl) > 0 for some tI ) to then xj(t) > 0 for t ) t1 .

Proof: Note that (K) implies the hypotheses of Proposition 1.2 so x(t,t 0 ,O) ) 0 for

t ) t0 . Now

xt(t) = -aj(t)xj(t) + Lj(t,xt) ;1 -aj(t)xj(t).

Hence, if xj(t 1) > 0 then xj(t) > 0 for t ) tI by a standard differential inequality

argument.

The next lemma is the rationale for assuming (R). It guarantees

"ignition" of some component of x(t,t 0 ,O).

Lemma.2.2: Let (R) hold. If e C+, 0 f Ker(R), to - A then there exists

i c N and t 4 [to,to+IrI) such that xi(t,t 0 ,O) > 0.

Proof: If 0(0) 0 0 then the conclusion follows by taking i e N such that

i() > 0 and t to.
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Assume 0(0) - 0. By (R), there exists i e- N and T G [,Ir I) such that

L i(to+T)S(T)O) > 0. Since [S(T)O](0) = 0, Ei(tO+T,S(T)O) = Li(to+T,S(T)O). Clearly

xt(to,O) ) S(t-t0 )O for t ) to so Li(to+T,Xto+Ti(to,O)) ; Li(to+T,S(T)O) > 0. Hence

Xto+T(to,O) 0 0 and this implies our result.

Putting together (K) and (R), we see that if * C= C+, * Ker(R) then

some component of x(t,t0 ,O) becomes and remains positive. To "turn on" the other

components is the job of (1).

Provosition 2.3: Let (K),(I) and (R) hold. If * e C+, * f Ker(R), to G R then

x(t,t0 ,O) > 0 for t ?, to+n I r

Proof: By Lemmas 2.1 and 2.2, there exists an i e N such that xi(t) > 0 for

t ?1 to+ IrI1. It f ollows that teeexists o(t) > 0 f rt to+21Ir1Ischta xt )oc(t);i

for t )to+21r1. Hence L(t,xt) ) a(t)L(t,ei) for t ): to+21r1. Now since

A(L)(t) =-[diag a(t)] + A(L)(t), A(L)(t) is irreducible. It follows that there exists

j~i such that Lj(to+2IrI ci) > 0. Either xj(t 0+21ri) > 0 or xj(t 0+2IrI) = 0 and

x'j(t 0+2IrI) =Lj(to+2Ir 1,xto+21r1)

- Lj~t+2IrI~to+2r) ) :(to+2 IrI1) Lj(t0+2 I rc 1, 0

But x (t0+2 Ir 1) =0 and x'j(t0+2 IrI1) > 0 contradicts xj (t) 0 f or t ) to. Hence we

must have xj(t 0+2 I rI > 0 and by Lemma 2.2, xj(t) > 0 for t ) to+21Ir 1.

It follows that there exists O(t) > 0 for t ) t0 +3 Ir Isuch that xt ) C(t)ei+O(t)cj

for t ) t0 +31r l. Hence L(t,xt) ) cI(t)L(t,ei) + 0(t)L(t~ej) - A(L)(t)(,(t)e+3(t)ej).

Now A(L)(t0 +31Ir I) is irreducible so A(L)(t0 +3 IrlI)(o(t 0 +31rl)ei+L(t 0+31rlI)ej) ek>O

f or some kf(i,j). The reasoning is as follows. Since A(L)(t3 ) 0t3 -to+31r ) is

M* WkA 11
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irreducible A(E)(t 3) does not leave invariant the span of e1 and cj. It follows

that A(E)(t 3)(90(t 3 )ei + )d3(t 3) ej).ek > 0 for some choice of Ace(O,1), x(O,I) and

kE-N-(i,j). Since A(E)(t3 ) is nonnegative the assertion above follows. Now, if

xk(t3) = 0 then

xjk(t 3) = L(t 3 ,xt 3) A(L)( t3)(c(t3)ei+8 (t3)ej) -ek > 0.

But this is incompatible with xk(t) ), 0 for t ;1 to, hence xk(t3 ) > 0. BY7 Lemma

2.2, xk(t) > 0 for t ) to+31Ir 1.

Continuing in this manner, we obtain x(t) > 0 for t ) to+n Ir.

Recall our earlier example where

L(t,O) = col(a ol(O)+b02 (-1I/2),c01 (-1 )+d4O2(O))

where b > 0 and c > 0. Then (K) holds with E(t,O) - col(bO2 (-l/2),c~l(-l)). The

matrix A(L)(t) is given by

*A(L)(t) 
=I

Ic d]

and is clearly irreducible since both b and c are positive. It is easy to check that

(R) holds for this example if r = (1,1/2) determines the restriction map R. Notice

that (R) fails if "0 f Ker(R)" is omitted from (R).

We now turn to the main goal of this section. Let r G Rn and

C - C([-IrI,O],Rn). Consider (2.1) where f :U - Rn is a continuously

differentiable map on the open subset U of C. Assume U is order convex, that is,

if e U with 0 0 then tO + (1-t)O G U for 0 (t 1 .
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Definition: f is cooperative in U if for every 0 C U, L = df(0) satisfies (K).

f is cooperative and irreducible in U if f is cooperative in U and the following

hold:

(1) If 0 e U and 0 e C with 0-0 e Ker(R) then 0 6 U and

f(0) = f(0).

(2) For all 0 e U, L = df(O) satisifies (I) and (R) with the

provision that i and T are independent of 0.

We will write x(t,O) (xt(o)) for x(t,0,0) e Rn (xt(0,0) e C). Thus x(t,O) is

the solution of (2.1) satisfying x0 (O) = *. The next lemma, together with

Proposition 1.1 implies that if f is cooperative in U and 0 ( 0 then xt(O) ( xt(O)

for t ;) 0 on their common interval of existence.

Lemma 2.4: If f is cooperative in U then f satisfies (H) of section 1.

Proof: Suppose 0,0 E U, 0 ( and Oi( 0 ) = Oi( 0 ). Since U is order convex and f

is continuously differentiable

1
f i(O)-f i() f= dfi(sO+(l-s)O)(0-O)ds ) 0

0

where the inequality holds since the integrand is pointwise nonnegative by (K).

The next result is the main theorem of this section. It will allow us to

define a local semi-flow on Cr which is eventually strongly monotone.

Theorem 2.5: Let f be cooperative and irreducible in U. If 0 and 0 are

elements of U with 0 ( 0, -O I Ker(R) and [0,o), 0 < a < -, is the intersection of

the maximal intervals of existence of x(t,O) and x(t,O), then
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x(t,O) < x(t) for niri ( t < a.

Proof: By Lemma 2.4 and Proposition 1.1 we have x(t,O) ( x(t,O) on 0 4 t < a.

Now

x(t,O) - x(t,) f J d~x(t,sO+(l-s)O)(4)-O)ds.

0

If t E U and 0 C C, dox(t,4)0 = y(t,O) satisfies the linear variational equation

y'(t) = df(xt(t))yt 9 YO = 0

(See Theorem 4.1 of [6].) Let L(t,.) = df(xt(k)). It is apparent that L satisfies (K)

and (I). In order to see that (R) holds for L, suppose g E C, g f Ker(R) and

gO) = 0. By our assumption that f is cooperative and irreducible, there exists i

and T ) 0 such that df( )i(S(T)9) > 0 for all t E U. In particular, if =T(

teU, we have Li(T,S(T)L) > 0 which is just (R).

We can now apply Proposition 2.3: if 8 e C+ , 0 f Ker(R) then

y(t,O) = dox(t,t)O > 0 for t ;1 nirI. Now 4)-0 e C+ and 0-0 1 Ker(R) so for each

fixed s, the integrand above is positive for t ? n Ir I. Hence the integral above is

positive and we have proved the theorem.

If f is cooperative and irreducible in U, we would like to think of the

state space for (2.1) as Cr rather than C. The reason for this is simple. In order

to apply a very powerful result of Hirsch for strongly monotone flows [11,12 (see

section 4) we need the semi-flow generated by the maps 0 -, xt(O) to have the

V' strong monotonicity property that if 0 ( @ and 0 i 0 then xt(O) < xt(O), at least

for large t. Theorem 2.5 does not give us this in C. However, in Cr, we have this
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property as we shall show. First note that if 0,04'E C and 4'-O e Ker(R) then

x(t,4') ax(t,4') for t ) 0. Here is where (1) of the definition of cooperative and

irreducible plays a role (a proof can be given following the proof of Theorem 2.5).

Consider the collection of maps

defined on open subsets of U, depending on t. It is apparent that (0t) defines a

local semi-flow in the sense of Hirsch [11,121. Moreover, if 0,0j 6 Cr, 0' 4 0, ' * 4',

then clearly 14' 1 14 and 14-10' f Kcr(R). Hence, by Theorem 2.5, xt(l4') > xt(I4')

f or all t ) (n+1)Ir I f or which both exist and thus Ot(4 ') < 4't(4) f or t ) (n+l1)I1rI
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3. Stability of steady states and connecting orbits,

In this section we are concerned with the stability of a steady state of

the FDE

(3.1) x'(t) = f(xt)

where f is a continuously differentiable cooperative map f : U - Rn, U an open

order convex subset of C, r e Rn. Suppose there exists v E Rn with v E U and

f (v) = 0

and consider the linear variational equation about the steady state v:

(3.2) y'(t) = L(y t ) , L = df(v).

Let L be represented as

Lio = E Oj(e)d ij() , 1 ( i (n
j= -i1 rl

nij - BV[-Irl,0 I , nij(-irI ) = 0 hi j( 0) continuous from the left on

(-Ir1,0).

The characteristic values associated with the linearized equation (3.2) are roots of

det A(X) = 0

(3.3) A(X) =X - A(X)

0

A(X)iJ =0r e ed i j ( e)
f Ir I

Define the stability modulus of L as

s(L) - max(Re k : det &CX) = 0)

The stability modulus is a well-defined quantity since for any 8 E R there are

at most a finite number of zeros of det A(k) with Re X ) 8. It is well known that
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the steady state v is asymptotically stable if s(L) < 0 and is unstable if s(L) > 0.

Since f is cooperative L satisfies

(K) Whenever 0 E C+  and Oi ( 0 ) = 0, Li  0.

Hence the flij satisfy

ij(8) ,i * j, is nondecreasing in 8 6 [-Ir1,0]

nii(s), 9 O [-Ir ,O)
(3.4) 7ii(e) =

Tii(B) is nondecreasing in 8 E [-IrI,0].

Our first result says that the stability of a steady state of a cooperative

system is determined by a real "most unstable" characteristic root

Theorem 3.1: Let f be cooperative. Then s(L) is a root of det A(X) = 0. If X

is a characteristic root different from s(L) then Re X < s(L). If L satisfies the

hypotheses of Proposition 2.3 then s(L) is a simple root of det A((k) = 0.

Proof: Consider A0L) for real values of X. For i~j, it follows from (3.3),(3.4)

that A(X)i j ) 0. Hence A(X) is a matrix with nonnegative off diagonal elements.

Similarly, if X1 ( X2, then A(X 2 )ij ( A(Xl)ij. This is immediate from (3.3) and

0
(3.4) for i~j. For i=j, note A(X)ii = ni()1i(- + f e d~ii(8 and 16i is non-

decreasing so A(X2)ii ( A(kl)ii. Thus we have that XI ( X2 implies A( 2) ; A( ,).

Consider what happens as co -. From (3.3) we have that

lim Aijo) - ij(0)-ij(0-), hence limA() = A(-) = (ij(0)-7ij(0-)) and observe

A(-)ij 0 i~j.
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Let us write s(A(X)) for the stability modulus of the matrix A(X). Since

for real X, A(X) has nonnegative off diagonal elements, it is known that s(A(X)) is

an cigenvalue of A(X). Furthermore, if Xl 4 X2, A(X 2) 4 A(X 1 ) and so

s(A(x2)) 4 s(A(Xl)). It is also known that s(.) is continuous, thus the map

-- s(A(,)) is a nonincreasing continuous map from R into itself which has a

finite limit at +-. It follows that there exists a unique value of X, X0, for which

s(A(X0) ) = X0. We will show that s(L) = X0.

Since s(A(, 0 )) = 10 and s(A( 0 )) is an eigenvalue of A( 0), it follows that

det(s(A(Xo0 ))I - A( 0 )) = det(N0 ! - A(X 0)) = 0

and hence X0 i- a characteristic root of (3.2). Assume X is a real characteristic

root of (3.2) so that det(XI-A(X)) = 0. Then X is an eigenvalue of A(k) so s(A(X)).

It follows that X 4 X0. Indeed, if X > X0 then X 4 s(A(X)) 4 s(A(Xo0 )) = X0 < X.

Thus 10 is greater than or equal to any real characteristic root of (3.2).

Let T(t) yt(O) denote the solution of (3.2) with 0 e C. Then

T(t)(C+ ) C C and T(t) is a compact linear operator for t Ir 1. That is, (T(t))t >

is a strongly continuous positive semigroup consisting of compact operators for

t ; Ir 1. Now if p(T(t)) denotes the spectral radius then it is known that [6]

p(T(t)) = et , i = max(Re ) : det A(X) - 0).

On the other hand the set of characteristic roots is precisely the spectrum of the

infinitesimal generator of (T(t)) (see [6]). It has been shown that A belongs to the

spectrum of the generator of a strongly continuous positive semigroup, [5]. In

particular, gs is a characteristic root so g = X0 .

Moreover, by Theorem 7.2 in [8, see also 171, X0 is the only characteristic

root X satisfying Re X = 10.

Finally, if L satisfies the hypotheses of Proposition 2.3 then T(t)C +

belongs to the interior of C+ for t ), (n+l)trI. In this case p(T(t)) is a simple

~ r
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eigenvalue of T(t) and thus X0 is a simple characteristic root [1]. This completes

our proof of Theorem 3.1.

The proof of Theorem 3.1 yields much more than has been stated. In the

next few remarks, we bring out other consequences of the proof.

Remark I: There exists u ? 0 in Rn such that y(t) = ues(L)t satisfies the

variational equation (3.2). This is an immediate consequence of the well known

fact [2] that corresponding to s(A( 0 )(=s(L)=1 0 ) there is a nonnegative eigenvector

in Rn. If, in addition, L satisfies the hypotheses of Proposition 2.3, then one can

take u > 0. Again, this follows from the fact that Ao) is irreducible which in

turn follows from (I) of the previous section.

Remark 2: The importance of the fact that s(L) is itself a characteristic

root of (3.2) will be clear to anyone who has had experience in computing

characteristic roots of FDE's -- even one dimensional equations. They are

notoriously difficult to find. It is very important to be able to determine stability

by only considering the real characteristic roots of (3.2).

Remark 3: The second assertion of Theorem 3.1 is especially important in

the context of bifurcation theory. One naturally asks the question "how can a one

parameter family of steady state of a parametrized family of FDE's lose stability

-at a critical value of the parameter?" According to Theorem 3.1, if the family

'consists of cooperative maps, the answer is that a real eigenvalue must change sign

giving rise to a steady state bifurcation (generically) and an exchange of stability.

In particular, although a Hopf bifurcation is not precluded for cooperative FDE's

(see [21]), a steady state can never lose stability to a Hopf bifurcation. Put

another way, a local Hopf bifurcating periodic solution cannot be asymptotically

-5 %

w.
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stable (see also Theorem 4.2 of section 4).

The following result, a corollary to the proof of Theorem 3.1, provides a

relatively simple test for stability and instability.

Corollary 3.2: s(L) < 0 (s(L) > 0) if and only if s(A(0)) < 0 (s(A(0)) > 0).

Moreover s(A(0)) < 0 if and only if

A(0)I ."'" A(0)I j

(-l)J > 0 , j = 1,2,...,.n.

A(0)jl .. A(0)jj

where A(O)ij = nij(0 ).

Proof: The second equivalence is well known [2]. Recall s(L) X0, the unique

root of X-s(A(X)) = 0. But X -. X-s(A(X)) is an increasing continuous function.

Hence X0 < 0 if and only if 0-s(A(0)) > 0, that is, if and only if s(A(O)) < 0.

Similarly X0 > 0 if and only if 0-s(A(0)) < 0.

Corollary 3.2 has an interest interpretation. It is saying that the zero

solution of the linear FDE is asymptotically stable or unstable according as the

zero solution of the linear ODE

Z' = A(O)Z

is asymptotically stable or unstable. Notice how A(O) is obtained: A(O)ij = nij(O);

the magnitude of the delays are completely ignored! There is an appealing way to

look at A(0), that is

A(0)v - L(v)



-22-

in other words, A(O) is the restriction of L to the constant functions. This

observation leads to another interesting observation. Consider the nonlinear

ordinary differential equation

(3.5) x'(t) = F(x(t)) , F(x) = f(x).

It is easy to see that (3.5) is cooperative in the sense of Hirsch [9] (see also [23]).

The steady states of (3.5) and (3.1) are identical. Even more, the stability type of

a steady state is the same for (3.5) as for (3.1)! One only need check that

A ax ^^ ^
DF(x) = df(x) -.- = df(x)(e,...,en) = A(O).

Hence as far as steady states and their stability goes, one can trade in a

cooperative FDE for a cooperative ODE. The first person to see a connection

between (3.5) and (3.1) appears to have been R.H. Martin [13]. He did not make

the observation that steady states have the same stability type, however.

If L satisfies the hypotheses of Proposition 2.3 and s(L) > 0 then by our

earlier remark, there exists a solution of (3.2) of the form y(t) = ues(L)t, u > 0. In

terms of our state space Cr, this solution gives rise to a monotone orbit t - yt(U),

t E R, of (3.2) where U e C+ is given by

(3.6)

U(0) uies(L)e , -r i 4 0 0 .

The orbit connects the trivial solution of (3.2) to . This "most unstable"

manifold for the variational equation should have a counterpart for the nonlinear

equation (3.1). This is precisely the content of the next theorem.
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Theorem 3.3: Let f be cooperative and irreducible. Suppose f(v) = 0,

s = s(df(v)) > 0 and suppose df is Lipschitz continuous in a neighborhood of v.

Suppose v + C+ belongs to the domain of f and f is bounded on bounded subsets

of U. Then there exists a unique C1 function y:[0,-) -. v + C+ satisfying
A

(1) y(T)=v+Tu+o(T) as T"0

where U > 0 is as ir (3.6).

(2) xt(Y(T")) = y(eStT) , t ) 0, T"; 0.

(3) 0 ( TI ( T2 implies y(Tl) ( y(T 2 ).

(4) Either (a) lim Ily(T)II = or (b) lim y(T) = w where
T--. T-.*

we Rn,w >v and, f(%)= 0 and s(df(w)) 4 0.
A A

(5) If (4)(a) holds, then for all 0 ) v , f vlxt(O)II - as

t tends to the right hand limit of the maximal interval

of existence of xt(O). If (4)(b) holds, then for all
A*A

V,,v w, v , xt(O)"_w as t-'.

Theorem 3.3 says that the monotone curve r = (y(T):T ; 0) is a heteroclinic orbit of

A A

(3.1) connecting the unstable steady state v to the steady state w (or -). In
AA

addition, the steady state w, if not asymptotically stable (s(df(w)) 4 0), at least

attracts all initial conditions 0 different from v with v * ( w. When w in

Theorem 3.3 exists, we will paraphrase Theorem 3.3 by simply saying that there

exists a monotone increasing trajectory connecting v to w.

Actually, we have only stated half of the story. If V-C+ belongs to the

domain of f then one can find a monotone decreasing trajectory connecting v to p

(or -) with the obvious changes in (1)-(5) above.

The assumption that v+C + belongs to the domain of f can be

significantly weakened. For example, if it is known that there exists a steady
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state w with w > v and [v,w] belongs to the domain of f then one can show that
SA

r C [v,w]

The proof of Theorem 3.3 is very similar to the proof of Theorem 2.7 in

[23] and uses Theorems 1.1 and 2.1 in [22]. Hence we will not give the proof here.

It should be remarked that Matano [15,16] has stated a similar result, although

A A

requiring a second steady state w v but less smoothness than we require.
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4. Stronalv monotone local semiflows and FDEs.

In this section we state some very powerful results due to M.W. Hirsch

[9-12; for monotone semi-flows which have direct application in our setting. We

will not state these results in there greatest generality. Let X be a separable

Banach space and K a cone in X, that is, K is a nonempty closed subset of X with

the closure properties R+ -K C K, K+K C K and K r(-K) = (0). We assume that K

has nonempty interior, K °. We write x ( y (x < y) if and only if y-x belongs to

K (K0 ). Let U be an open order convex subset of X. Let 0 = (0 t)t)0 be a local

semi-flow on U (see e.g. [11,16]), in particular, each Ot is a continuous map on a

subset U t of U and the semigroup property OtOs = Os+t holds under appropriate

conditions. We say that 0 is a monotone flow if each Ot is monotone: x,y 6 Ut

and x 4 y implies Ot(x) 4 Ot(y); 0 is strongly monotone if each Ot is strongly

monotone: x ( y, x 0 y, t > 0 implies Ot(X) < Ot(y).

As an example, consider a cooperative FDE defined on an order convex

Ot
subset of Cr, r e Rn. Then X = Cr and the local semi-flow is given by 0--xt().+

This semi-flow is monotone in the above sense. If f is cooperative and irreducible

then Ot is eventually strongly monotone but not strongly monotone. That is, there

exists T > 0 such that if x ( y, x 0 y then Ot(x) < ,t(y) for t ) T (provided

Ot(x),Ot(y) exist). For FDE's we may take T = (n+l)lrI by Theorem 2.5. Note that

T is independent of x or y. The results of Hirsch which we state below for

strongly monotone flows are true for what we term eventually strongly monotone

flows (see also Matano [16]).

The first two results require only a monotone flow (See [11], Theorem

2.3 and Corollary 2.4.)
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Theorem 4.1: Let x E U be such that -6+(x) = ([t(x): t ) 0) is compact in U.

Assume for some real T > 0, OT(x) > x (Ot(x) < x). Then Ot(x) converges to an

equilibrium as t -.

Theorem 4.2: A monotone flow does not have an attracting periodic orbit.

By an equilibrium, we mean a point y e U such that 0,t(y) y for all t00.

By periodic orbit we mean a non-constant closed orbit. Such an orbit is attracting

if it attracts an open set. It is not difficult to see that Theorem 4.1 implies

Theorem 4.2.

The following results require the flow to be strongly monotone. For

simplicity, we assume that the domain of Ot is U for every t ? 0 and that all

orbits have compact closure in U. The following result is a special case of

Theorems 5.2 and 5.5 in [11].

Theorem 4.3: Let S be a totally ordered subset of U and let E be the set of

equilibria. Assume E consists of isolated points. Then the subset of points of S,

the orbits of which do not converge to a point of E, is at most countably infinite.

In particular, Theorem 4.3 implies that a dense set of points of U have

convergent orbits.

The following result of Hirsch [12] sharpens the conclusion of Theorem

4.3 at the expense, of course, of additional hypotheses. It does not require that X

be separable though (see Theorem 10.1 in [12]).
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Theorem 4.4: Let X0 be an open positively invariant set for (0t)t O and

suppose X0 contains a compact attractor which attracts points of X0 . Assume E is

a finite set. Then there is a dense open subset Do of X0 consisting of

*asymptotically stable" points x for which u x) C E.

By u x), we mean that Omega limit set, n cl( U Ot(x)), of the orbit

T10 tOT

through x. A compact attractor K is a compact invariant set which attracts a

neighborhood of itself. In Theorem 4.4, we assume w(x) C K for all x C X0 . We

remark that Er(K is nonempty (see [11]).

We now make use of our remarks concluding section 2, together with

Theorem 4.4 and Lemma 2.2 in [6].

Theorem 4.5: Assume (2.1) is cooperative and irreducible in U and that f

maps bounded subsets of U to bounded subsets of Rn. Assume that U is positively

invariant for (2.1), there is a closed bounded subset B of U such that for all

C e U, w0() - B and the map 0 -. xt(O) maps bounded sets to bounded sets for each

t ) 0. Then B contains a compact attractor which attracts points of U. If E is a

finite set consisting of nondegenerate equilibria, then the union of the basins of

attraction of the equilibria e with s(df(e)) < 0 is an open dense subset of U.

Proof: By Lemma 2.2 in [6], B contains a compact attractor which attracts points

of U. By Theorem 4.4, there is a dense open subset U0 of U consisting of

asymptotically stable points 0 for which w(*) C E. But if 0 is an asymptotically

stable point with w(0) - (e), e C E, then necessarily s(df(e)) < 0. Hence U 0 is a

subset of the union of basins of attraction of equilibria e with s(df(e)) < 0.
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5. An cxamplc

As an application of the ideas in the previous section we consider a

mathematical model of biochemical feedback in protein synthesis developed by

Goodwin [4] and which has been the object of much study [13,20,21,24]. We refer

the interested reader to [4] for details concerning the model. The quantities

Xlx2,...,x n denote concentrations of mRNA (xl), various enzyme-intermediates

(x2,...,Xn.1) and a final product protein (xn) in a sequence of first order reactions

x I -- x2 - ... -' xn . The product protein is assumed to induce (positive feedback)

the transcription of mRNA.

The equations derived from the model are given below as (5.1). In (5.1),

we have used the notation xj, t to denote the function xj,t(O) = xj(t+8), -rj 0 0.

x 1(t) = h(Lnxn,t) - lx 1 (t)
(5.1)

xt(t) f LjlXj.,t - ajxj(t), 2 ( j ( n

0
LiO= j O(O)dni(B)

-ri

ni : [-ri,0] - R is nondecreasing

ni(-r i ) = 0, ni( 0 ) = 1, 17i(8) > 0 for 0 > -ri

h :R+ -R+ is a smooth function with h'(u) > 0 for u ;,0

ai > 0, 1 ( i ( n.

R.H. Martin has considered equation (5.1) in the special case that h(u) = u/l+u and

Ljj =- 0 (-r ) in [13]. We have borrowed techniques from Martin as well as from

previous authors (e.g. Selgrade [20], Hirsch [10]) who have treated simpler versions

of (5.1). Allwright [24] also treats a version of (5.1).

A brief word on the assumptions listed below (5.1) is appropriate.

Concerning the integrators ni , we set 'i(-r i ) - 0 merely as a normalization (recall
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F~i and ii+c, c C R, give equivalent integrals). Our requirement that 17i(0) = I can

always be achieved by a scaling of the xi and an appropriate redefinition of h. If

our requirement that ni(e) > 0 for 8 > -ri does not hold then rli(e) = 0 on some

subinterval [-ri,-s i] and hence one could replace -ri by -si. This assumption, given

ni(0) = 1, is thus without loss of generality. On the other hand, it is essential for

the proper choice of state space, namely Cr, r M (rl,r 2,...,rn) o 0, for (5.1) to be

cooperative and irreducible. We require h' to be locally Lipschitz in order to

apply Theorem 3.3.

We write the right hand side (5.1) as f(xt) where

f(0) = col(h(Ln n)-%10 1(0),L 01" 202( 0) ....,Ln- On- 1"% 0n(0 ))

and f: C -Rn.

Since h and L- are nondecreasing in their arguments, f satisfies (H), in

fact, f is cooperative. Note that this would not be the case if -aix(t-Ti ) replaced

-cx(t). In addition f satisfies the hypotheses of Proposition 1.2 so that the flow

0 * xt(0), t ) 0 leaves C+ positively invariant (so long as solutions are defined).

Our first task is to insure that solutions with nonnegative initial

conditions are globally defined and to seek conditions for boundedness of these

solutions. The following inequality will be useful.

h(u)
(5.2) lim sup-- = a< m .

U + U

Lem 5Suppose (5.2) holds. If 0 4E C+ then x(t,O) is defined for t0O

and x(t,O))O. If

(5.3) a < n' i

then d+(0) - (xt(o): t ) 0) has compact closure.
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Proof: By (5.2) there exists b ) 0 such that h(u) 4 au+b for u 0. Let

g(u) = au+b and write x(t,oh), x(t,og) for the solution of (5.1) and (5.1) with g

replacing h, respectively. The solution x(t,O,g), 0 E C+ is globally defined since it

satisfies a linear FDE. By Proposition 1.1 and Proposition 1.2 we have

0 ( x(t,Oh) ( x(t,Og) on the maximal interval of existence of x(t,O,h). Now f

maps bounded subsets of C+ to bounded subsets of Rn so by Theorem 3.2 in [6],

x(t,O,h) can fail to be globally defined only by becoming unbounded, a possibility

that our inequality precludes. It follows that x(t,o,h) is defined for t ) 0.

Now suppose (5.3) holds. The function x(t,Og) satisfies a linear non-

homogeneous equation which we write

(5.4) Z'(t) - LZt + be 1

where LO = col(aLnOn-a1O1(0),LlOI-a2O2(0)...Ln-ln..l-ann(O)). We will show that

s(L) < 0 by making use of Corollary 3.2. First we calculate A(0) (see (3.3))

-aI  0 . . . 0 a

I 2 0 0

(5.5) A(0) = 0 1 -0 3  0 .. 0

0 . .. 0 1

Note that the subdiagonal of ones arises due to our normalization 17j(O) = 1. Now

it is easy to check that the n principal minors of Corollary 3.2 have the correct

sign if (5.3) holds. Hence the zero solution of the linear homogeneous equation

Z'(t) = LZt is asymptotically stable. But this implies that the positive steady state

Xn a b/(al 2 ... %-a), xj = aj+lxj+1, j=l,...,n-l, of the nonhomogeneous equation (5.4)

is globally attracting. The boundedness of x(t,O) - x(t,Oh) follows from the
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comparison 0 ( x(t,4',h) 4 x(t,0,g). The compactness of the orbit 3+(0) follows from

the fact that it is bounded, that f maps bounded sets to bounded sets, and the

Ascoli-Arzela theorem.

We have observed that f is coo,)erative. In fact, it is cooperative and

irreducible as we now show. For 04E Ce

df00= col(8 LnOn-x1 01 (O),L 1 0- 2O2(0),...,Ln-1 0 n-i-enn(O))

8 = 13(0) = h'(Lnlkn) > 0.

In order to check (1), we need to show that the matrix A(df(P)) is irreducible for

each 04'E C+. But A(df(4')) is identical to the matrix A(O) in (5.5) except that

a=13(0). Hence A(df(4')) is irreducible if and only if 13(0) = h'(Ln4' n) > 0.

Consider the requirement (R) (t0 =O). Let * E C+, 0 f Ker R and 0(0)=O.

Then for some j and some e044-rjOI. Oj(e0) > 0. Set i=j+1 where we agree that

n+l=l and set T - rj+eo ) 0. Note that both i and 'T depend only on 0 and not on

0
4If j~cn then df(4')i(S(r)O) = Lj(S(T)O) =f (S(T)O)j(8)d'7j(e), where

(S(T)O)j(-rj) - Oj(e0) > 0. Since we assumed nj(e) > 7?j(-rj) = 0 for e > -rj, it

follows that the integral is pusitive since the support of (S(T)O)j and the support

of dij overlap. If j-n and 0(0') > 0, a similar calculation shows df(4')1 (S(T))>O.

We have proved the following

Lemm 5.: is cooperative and irreducible in C+.

We now turn to the question of existence and stability of steady states of

(5.1). We assume that (5.3) holds. The steady states of (5.1), x , x e Rn are

solutions of

"1 , 1 ,1 . 11 )I"'l" k .....
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h(xn) = Ix I

xj. = ajxj, 2 ( j 4 n.

and are in one-to-one correspondence with solutions of

h(xn) - ala 2 ... anx n = 0, xn ) 0.

We assume that

(5.6) 0 is a regular value of q(u) -h(u) - a, ... anU .

It follows from (5.3) and (5.6) that there exists at least one steady state and there

are finitely many steady states. Moreover, the steady states are totally ordered

A l 2 <m
x X2 <... <

The stability of x' depends, according to Corollary 3.2, on the stability of the

matrix

-a, 0 ... 0 h'()

1 -a2 0 ... 0

A i  0 1 -a3  0 ... 0

0 ... 0 1 -an

The principal minors alternate in sign as in Corollary 3.2 if and only if

h'(x4) < al...a n. The reverse inequality implies s(Ai) > 0 as is easy to check. We

have proved part of the following

Theorem 5,3: Assume (5.3) and (5.6) hold. Then xm,m-2,m-4 are

asymptotically stable and xml .... are unstable. There exists a monotone

increasing orbit connecting ;m-I to xm and a monotone decreasing orbit

connecting to ml to xm 2 . An identical assertion holds for the other unstable

steady states ;m-3,...
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Proof: (5.3) and (5.6) imply that h'(x n )-a l ...cn < 0, thus m is asymptoticallyn n

stable. By (5.6) the sign of h'(xi)-cl...n must alternate with i. The existence of

connecting orbits follows from Theorem 3.3.

The main result of this section follows. We write B(x i ) for the domain
of i (A" (O C^"K ) A

of attraction of x , i=m,m-2,m-4..... That is, B(x') = {xC : to(0) = (x')).

Theorem 5.4: Assume (5.3) and (5.6) hold. Then [0,x m ] attracts all orbits of

(5.1) with OEC + . If m=l then B(x 1) = C+ . If m > 1, then UB(xm- 2 j) is open and

dense in C+ .

Proof: In Lemma 5.1 we showed that every orbit has compact closure in C+

and in fact is attracted to a bounded subset of C+ , namely, to [0,y] where

yERn is the equilibrium of the linear inhomogeneous comparison equation.

Hence the hypotheses of Theorem 4.5 are satisfied. We only need to verify

the conclusion B(x) = C+ when m=l. We first observe that V + C+ belongs-

-U to B(x ). In fact, if 0 1 then there exists 0 with x 0 < 01 such that

C- e B(x 1) (use Theorem 4.4 or Theorem 4.5). But then 0 e B(x) since

x xt(o) ( xt(o) for t ) 0. Similarly, if 0 - C+ and 0x I then 1 B(xl).

Hence, if 0 E C+ there exist 01,02 - B(x) with 01 ( 0 02 and hence 0 c

B(x'). This completes our proof.
.4

'

One might conjecture that every orbit of (5.1) with nonnegative initial

A"i

condition converges to an x even when m > 1. However, this is, in general,

false. There can be periodic orbits of (5.1), necessarily unstable (Theorem 4.2).

Indeed, Selgrade [21] has shown for the ODE version (Ljxj,t - xj(t)) of (5.1)
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that a Hopf bifurcation can occur at an unstable steady state.

A, It is worth mentioning that by Theorem 4.5, (5.1) possesses a compact

attractor in [,xm] C C+ . This compact attractor, J, is invariant and connected.a.

Of course, when m=l, J = {x), but if m > 1 then J consists of the equilibria, their

connecting orbits described in Theorem 5.3, and the unstable manifolds of the

equilibria ,x Any exotic, but necessarily unstable, dynamics together

with its attracting set must be connected in J by the unstable manifolds of the

unstable equilibria.4

4

'I.
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